算竞笔记 - FFT/多项式/数论专题
Preface 参考主要来自 https://cp-algorithms.com/algebra/fft.html, https://en.wikipedia.org/wiki/Discrete_Fourier_transform, https://oi.wiki/math/poly/fft/ 为照顾某OJ 本文例程(杂项除外)C++标准仅需11;板子传送门,题目传送门 定义 多项式$A$的$DFT$即为$A$在各单位根$w_{n, k} = w_n^k = e^{\frac{2 k \pi i}{n}}$之值 $$ \begin{align} \text{DFT}(a_0, a_1, \dots, a_{n-1}) &= (y_0, y_1, \dots, y_{n-1}) \newline &= (A(w_{n, 0}), A(w_{n, 1}), \dots, A(w_{n, n-1})) \newline &= (A(w_n^0), A(w_n^1), \dots, A(w_n^{n-1})) \end{align} $$ $IDFT$ ($InverseDFT$) 即从这些值$(y_0, y_1, \dots, y_{n-1})$恢复多项式$A$的系数 $$ \text{IDFT}(y_0, y_1, \dots, y_{n-1}) = (a_0, a_1, \dots, a_{n-1}) $$ 单位根有以下性质 积性 $$ w_n^n = 1 \newline w_n^{\frac{n}{2}} = -1 \newline w_n^k \ne 1, 0 \lt k \lt n $$...