Preface
参考主要来自《算法竞赛入门经典:训练指南》、OIWiki、CP Algorithms等资源和多方博客、课程,在自己的码风下所著
注: 部分实现可能用到较新语言特性,烦请修改后在较老OJ上使用;原则上提供的代码兼容符合Cpp20及以上标准的编译器
Header
#include "bits/stdc++.h"
using namespace std;
typedef long long ll; typedef double lf; typedef pair<ll, ll> II; typedef vector<ll> vec;
const inline void fast_io() { ios_base::sync_with_stdio(false); cin.tie(0u); cout.tie(0u); }
const lf PI = acos(-1);
const lf EPS = 1e-8;
const ll INF = 1e18;
const ll MOD = 1e9 + 7;
const ll DIM = 1e5;
int main() {
fast_io();
/* El Psy Kongroo */
return 0;
}
Misc
- 开启GCC debug容器:
add_compile_definitions(-D_GLIBCXX_DEBUG)
数学
快速幂
// 注:爆int64考虑__int128或相关intrinsic
// MSVC: https://codeforces.com/blog/entry/106396
// Clang on Visual Studio: https://learn.microsoft.com/en-us/cpp/build/clang-support-cmake?view=msvc-170
template<typename T> T binpow(T a, T res, ll b) {
while (b > 0) {
if (b & 1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
ll binpow_mod(ll a, ll b, ll m = MOD) {
a %= m;
ll res = 1;
while (b > 0) {
if (b & 1) res = (__int128)res * a % m;
a = (__int128)a * a % m;
b >>= 1;
}
return res;
}
拓展欧几里得
求解 $gcd(a,b)$ 和 $ax+by=gcd(a,b)$ 的一组解
ll exgcd(ll a, ll b, ll& x, ll& y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
ll d = exgcd(b, a % b, x, y);
ll t = x;
x = y, y = t - (a / b) * y;
return d;
}
https://codeforces.com/gym/100963/attachments J - Once Upon A Time
int main() { fast_io(); /* El Psy Kongroo */ while (1) { ll n, m, a, k; cin >> n >> m >> a >> k; if (n == 0 ) break; // Y1 = n + mt_1 // Y2 = k + at_2 // solve for Y1 = Y2 // n + mt_1 = k + at_2 // n + mx = k + ay // mx - ay = k - n // let A = m, B = -a, M = k - n // Ax + By = M // Solve for any x,y // Solve for // Ax + By = 1. With Bezout A B must be coprime ll g, x, y, C = n - k; ll A = a, B = -m; g = exgcd(A, B, x, y); if (C % g) cout << "Impossible" << endl; else { x *= C / g, y *= C / g; // Ax + By = M // We need positive soultions. What do? // x = x - B, y = y + A // x = x + B, y = y - A ll kx = abs(B / g); while (x <= 0) x += 10000 * kx; // ??? x %= kx; while (x <= 0) x += kx; y = (C - A * x) / B; cout << k + a * x << endl; } } return 0; }
线性代数
矩阵
template<typename T, size_t Size> struct matrix {
T m[Size][Size]{};
struct identity {};
matrix() {}; // zero matrix
matrix(identity const&) { for (size_t i = 0; i < Size; i++) m[i][i] = 1; } // usage: matrix(matrix::identity{})
matrix(initializer_list<initializer_list<T>> l) { // usage: matrix({{1,2},{3,4}})
size_t i = 0;
for (auto& row : l) { size_t j = 0; for (auto& x : row) m[i][j++] = x; i++; }
}
matrix operator*(matrix const& other) const {
matrix res;
for (size_t i = 0; i < Size; i++)
for (size_t j = 0; j < Size; j++)
for (size_t k = 0; k < Size; k++)
res.m[i][j] = (res.m[i][j] + m[i][k] * other.m[k][j]) % MOD;
return res;
}
};
typedef matrix<ll, 2> mat2;
typedef matrix<ll, 3> mat3;
typedef matrix<ll, 4> mat4;
https://codeforces.com/gym/105170/submission/261977724
mat2 Ti[DIM]; bool s[DIM]; ll s_len = 0; int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cerr.tie(0); mat2 F0{ {0,1} }; // [F0,F1] mat2 T0 = F0; mat2 T1{ {0, 1}, {1, 1} }; mat2 T{ {1, 1}, {1, 2} }; // T0 + T1 char b; while ((b = getchar()) != EOF) if (b == '1' || b == '0') s[s_len++] = b == '1'; Ti[0] = mat2{ mat2::identity{} }; Ti[1] = T; for (ll i = 2; i < s_len; i++) Ti[i] = Ti[i - 1] * T; ll ans = 0, n1 = 0; for (ll mask = 0; mask < s_len; mask++) { bool b = s[mask]; ll rest = s_len - mask - 1; if (b) { ll d = (T0 * Ti[rest]).m[0][0]; T0 = T0 * T1; ans = (ans + d) % MOD; // cerr << "d: " << d << " ans: " << ans << "\n"; n1++; } } ans = (ans + T0.m[0][0]) % MOD; cout << ans; return 0; }
https://codeforces.com/gym/105336/submission/280576093 (D 编码器-解码器)
typedef matrix<ll, 101> m100; map<char, m100> mp; int main() { fast_io(); /* El Psy Kongroo */ string s, t; cin >> s >> t; for (char c : "abcdefghijklmnopqrstuvwxyz") mp[c] = m100{ m100::identity{} }; for (ll i = 0; i < t.length(); i++) mp[t[i]].m[i][i+1] = 1; m100 ans = mp[s[0]]; for (ll i = 1; i < s.length(); i++) ans = ans * mp[s[i]] * ans; cout << ans.m[0][t.length()] << '\n'; return 0; }
https://codeforces.com/gym/105170/submission/309042797 (Fib递推,二项式展开)
typedef matrix<ll, 2> mat2; typedef matrix<ll, 3> mat3; typedef matrix<ll, 4> mat4; mat2 M[DIM]; mat2 T = mat2{{0,1},{1,1}}; mat2 I = mat2{mat2::identity{}}; char S[DIM]; int main() { fast_io(); M[0] = I; M[1] = T + I; /* * 0 000 * 1 001 * 2 010 * 3 011 * 4 100 * 5 101 * 6 110 * 7 111 * ----- * I -> 0, T -> 1 * I^3 + I^2 * T + I.. + T^3 * This is binom expansion * \sum = (I + T) ^ m where 2^m - 1 = 7 */ scanf("%s", S); ll n = strlen(S); for (ll i = 2; i < n + 1; i++) M[i] = M[i - 1] * M[1]; ll ans = 0; mat2 pre = T; for (ll i = 0; i < n; i++) { if (S[i] == '1') { // 2^(n - i) - 1 ans += (pre * M[n - i - 1]).m[0][0] ; ans %= MOD; pre = pre * T; } } ans += pre.m[0][0]; ans %= MOD; cout << ans << endl; return 0; }
线性基
struct linear_base : array<ll, 64> {
void insert(ll x) {
for (ll i = 63; i >= 0; i--) if ((x >> i) & 1) {
if (!(*this)[i]) {
(*this)[i] = x;
break;
}
x ^= (*this)[i];
}
}
};
https://codeforces.com/gym/105336/submission/280570848(J 找最小)
int main() { fast_io(); /* El Psy Kongroo */ ll t; cin >> t; while (t--) { ll n; cin >> n; ll xor_a = 0, xor_b = 0; vec a(n); for (ll& x : a) cin >> x, xor_a ^= x; vec b(n); for (ll& x : b) cin >> x, xor_b ^= x; // swapping a[i],b[i] equals to xor_a ^= a[i] ^ b[i], xor_b ^= a[i] ^ b[i] linear_base lb{}; for (ll i = 0; i < n; i++) lb.insert(a[i] ^ b[i]); for (ll i = 63; i >= 0; i--) { ll base = lb[i]; if (max(xor_a, xor_b) > (max(xor_a ^ base, xor_b ^ base))) { xor_a ^= base; xor_b ^= base; } } cout << max(xor_a, xor_b) << endl; } return 0; }
数论杂项
皮萨诺周期
摘自 https://oi-wiki.org/math/combinatorics/fibonacci/#%E7%9A%AE%E8%90%A8%E8%AF%BA%E5%91%A8%E6%9C%9F
模 $m$ 意义下斐波那契数列的最小正周期被称为 皮萨诺周期 皮萨诺周期总是不超过 $6m$,且只有在满足 $m=2\times 5^k$ 的形式时才取到等号。
当需要计算第 $n$ 项斐波那契数模 $m$ 的值的时候,如果 $n$ 非常大,就需要计算斐波那契数模 $m$ 的周期。当然,只需要计算周期,不一定是最小正周期。 容易验证,斐波那契数模 $2$ 的最小正周期是 $3$,模 $5$ 的最小正周期是 $20$。 显然,如果 $a$ 与 $b$ 互素,$ab$ 的皮萨诺周期就是 $a$ 的皮萨诺周期与 $b$ 的皮萨诺周期的最小公倍数。
结论 2:于奇素数 $p\equiv 2,3 \pmod 5$,$2p+2$ 是斐波那契数模 $p$ 的周期。即,奇素数 $p$ 的皮萨诺周期整除 $2p+2$。
结论 3:对于素数 $p$,$M$ 是斐波那契数模 $p^{k-1}$ 的周期,等价于 $Mp$ 是斐波那契数模 $p^k$ 的周期。特别地,$M$ 是模 $p^{k-1}$ 的皮萨诺周期,等价于 $Mp$ 是模 $p^k$ 的皮萨诺周期。
因此也等价于 $Mp$ 是斐波那契数模 $p^k$ 的周期。 因为周期等价,所以最小正周期也等价。
https://codeforces.com/contest/2033/submission/287844746
ll A[DIM], G[DIM]; bool vis[DIM]; int main() { fast_io(); /* El Psy Kongroo */ ll t; cin >> t; while (t--) { ll n, k; cin >> n >> k; ll a = 1, b = 1, pos = 1; if (k == 1) cout << n % MOD << endl; else { for (ll i = 3; i <= 6 * k + 1; i++) { ll c = (a + b) % k; if (c % k == 0) { pos = i; break; } a = b % k, b = c % k; } cout << (n % MOD) * pos % MOD << endl; } } return 0; }
计算几何
二维几何
template<typename T> struct vec2 {
T x, y;
///
inline T length_sq() const { return x * x + y * y; }
inline T length() const { return sqrt(length_sq()); }
inline vec2& operator+=(vec2 const& other) { x += other.x, y += other.y; return *this; }
inline vec2& operator-=(vec2 const& other) { x -= other.x, y -= other.y; return *this; }
inline vec2& operator*=(T const& other) { x *= other, y *= other; return *this; }
inline vec2& operator/=(T const& other) { x /= other, y /= other; return *this; }
inline vec2 operator+(vec2 const& other) const { vec2 v = *this; v += other; return v; }
inline vec2 operator-(vec2 const& other) const { vec2 v = *this; v -= other; return v; }
inline vec2 operator*(T const& other) const { vec2 v = *this; v *= other; return v; }
inline vec2 operator/(T const& other) const { vec2 v = *this; v /= other; return v; }
///
inline static T dist_sq(vec2 const& a, vec2 const& b) {
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}
inline static T dist(vec2 const& a, vec2 const& b) {
return sqrt(vec2::dist_sq(a, b));
}
inline static T cross(vec2 const& a, vec2 const& b) {
return a.x * b.y - a.y * b.x;
}
inline static T dot(vec2 const& a, vec2 const& b) {
return a.x * b.x + a.y * b.y;
}
///
inline friend bool operator< (vec2 const& a, vec2 const& b) {
if (a.x - b.x < EPS) return true;
if (a.x - b.x > EPS) return false;
if (a.y - b.y < EPS) return true;
return false;
}
inline friend ostream& operator<< (ostream& s, const vec2& v) {
s << '(' << v.x << ',' << v.y << ')'; return s;
}
inline friend istream& operator>> (istream& s, vec2& v) {
s >> v.x >> v.y; return s;
}
};
typedef vec2<lf> point;
typedef vec2<ll> Ipoint;
二维凸包
struct convex_hull : vector<point> {
bool is_inside(point const& p) {
for (ll i = 0; i < size() - 1; i++) {
point a = (*this)[i], b = (*this)[i + 1];
point e = b - a, v = p - a;
// 全在边同一侧
if (point::cross(e, v) < EPS) return false;
}
return true;
}
lf min_dis(point const& p) {
lf dis = 1e100;
for (ll i = 0; i < size() - 1; i++) {
point a = (*this)[i], b = (*this)[i + 1];
point e = b - a, v = p - a;
// 垂点在边上
if (point::dot(p - a, b - a) >= 0 && point::dot(p - b, a - b) >= 0)
dis = min(dis, abs(point::cross(e, v) / e.length()));
// 垂点在边外 - 退化到到顶点距离min
else
dis = min(dis, min((p - a).length(), (p - b).length()));
}
return dis;
}
void build(vector<point>& p) { // Andrew p368
sort(p.begin(), p.end());
resize(p.size());
ll m = 0;
for (ll i = 0; i < p.size(); i++) {
while (m > 1 && point::cross((*this)[m - 1] - (*this)[m - 2], p[i] - (*this)[m - 2]) < EPS) m--;
(*this)[m++] = p[i];
}
ll k = m;
for (ll i = p.size() - 2; i >= 0; i--) {
while (m > k && point::cross((*this)[m - 1] - (*this)[m - 2], p[i] - (*this)[m - 2]) < EPS) m--;
(*this)[m++] = p[i];
}
if (p.size() > 1) m--;
resize(m);
}
};
typedef vec2<lf> point;
int main() {
fast_io();
/* El Psy Kongroo */
ll n, q; cin >> n >> q;
vector<point> convex_hull(n); // 逆时针
for (auto& p : convex_hull) cin >> p;
convex_hull.push_back(convex_hull.front());
while (q--) {
ll x11, y11, x22, y22; cin >> x11 >> y11 >> x22 >> y22;
point c1{ (lf)x11,(lf)y11 }, c2{ (lf)x22,(lf)y22 };
/*
圆外一点到圆内所有一点平均距离 -> 记点到圆心距为 $$d$$ 对称性易知
$$d^2_{sum} = \int_0^R \int_0^{2\pi} \sqrt{r^2 + d^2 - 2rd\cos \theta} \, r \, d\theta \, dr = \frac{\pi r^4}{2}+\pi d^2r^2$$
$$d^2_{avg} = d^2_{sum} / S_{C} = \frac{r^2}{2}+d^2$$
故求$$d_min$$;点在凸包内显然直接取$$0$$,凸包外则取点到边垂距min(若可取)或点到点min
*/
point C = (c1 + c2) / 2.0; lf R = (c1 - c2).length() / 2;
lf ans = R * R / 2;
if (!is_inside(C)) {
lf dis = min_dis(C);
ans += dis * dis;
}
cout << fixed << setprecision(10) << ans << endl;
}
return 0;
}
组合数
Lucas:$$\binom{n}{m}\bmod p = \binom{\left\lfloor n/p \right\rfloor}{\left\lfloor m/p\right\rfloor}\cdot\binom{n\bmod p}{m\bmod p}\bmod p$$
namespace comb {
ll fac[DIM], ifac[DIM]; // x!, 1/x!
void prep(ll N = DIM - 1) {
fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
for (ll i = 2; i <= N; i++) fac[i] = fac[i - 1] * i % MOD;
ifac[N] = binpow_mod(fac[N], MOD - 2, MOD);
for (ll i = N - 1; i >= 1; i--) ifac[i] = ifac[i + 1] * (i + 1) % MOD;
}
ll comb(ll n, ll m) {
return fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
ll lucas(ll n, ll m) {
if (m == 0) return 1;
return comb(n % MOD, m % MOD) * lucas(n / MOD, m / MOD) % MOD;
}
}
数论
乘法逆元
给定质数$m$,求$a$的逆元$a^{-1}$
- 欧拉定理知 $a^{\phi (m)} \equiv 1 \mod m$
- 对质数 $m$, $\phi (m) = m - 1$
- 此情景即为费马小定理,i.e. $a^{m - 1} \equiv 1 \mod m$
- 左右同时乘$a^{-1}$,可得 $a ^ {m - 2} \equiv a ^ {-1} \mod m$
- 即
a_inv = binpow_mod(a, m - 2, m)
相关trick
- $p = \frac{x}{x+y}\ mod\ p$ 即为
p = x * binpow_mod(x + y, m - 2, m)
- $1 - p$ 可以为 $1 - \frac{x}{x+y} = \frac{y}{x+y}$ 即为
inv_p = y * binpow_mod(x+u, m - 2, m)
- 也可以为$1 - p\ mod\ m = m + 1 - p\ mod\ m$ 即为
inv_p = binpow_mod(MOD + 1 - p, m - 2, m)
- $1 - p$ 可以为 $1 - \frac{x}{x+y} = \frac{y}{x+y}$ 即为
Eratosthenes 筛
namespace eratosthenes_sieve { // Eratosthenes筛法 + 区间筛
vec primes;
bool not_prime[DIM];
void init(ll N=DIM - 1) {
for (ll i = 2; i <= N; ++i) {
if (!not_prime[i]) primes.push_back(i);
for (auto j : primes) {
if (i * j > N) break;
not_prime[i * j] = true;
if (i % j == 0) break;
}
}
}
void update_range(ll l, ll r) {
for (auto p : primes) {
for (ll j = max((ll)ceil(1.0 * l / p), p) * p; j <= r; j += p) not_prime[j] = true;
}
}
}
namespace eratosthenes_sieve_d { // https://oi-wiki.org/math/number-theory/sieve/#筛法求约数个数
vec primes;
bool not_prime[DIM];
ll D[DIM], num[DIM];
void init(ll N = DIM - 1) {
D[1] = 1;
for (ll i = 2; i <= N; ++i) {
if (!not_prime[i]) primes.push_back(i), D[i] = 2, num[i] = 1;
for (auto j : primes) {
if (i * j > N) break;
not_prime[i * j] = true;
if (i % j == 0) {
num[i * j] = num[i] + 1;
D[i * j] = D[i] / num[i * j] * (num[i * j] + 1);
break;
}
num[i * j] = 1;
D[i * j] = D[i] * 2;
}
}
}
}
namespace eratosthenes_sieve_phi { // https://oi.wiki/math/number-theory/sieve/#筛法求欧拉函数
vec primes;
bool not_prime[DIM];
ll phi[DIM];
void init(ll N = DIM - 1) {
phi[1] = 1;
for (ll i = 2; i <= N; ++i) {
if (!not_prime[i]) primes.push_back(i), phi[i] = i - 1;
for (auto j : primes) {
if (i * j > N) break;
not_prime[i * j] = true;
if (i % j == 0) {
phi[j * i] = phi[i] * j;
break;
}
phi[j * i] = phi[i] * (j - 1); // phi(j)
}
}
}
}
Miller-Rabin
bool Miller_Rabin(ll p) { // 判断素数
if (p < 2) return 0;
if (p == 2) return 1;
if (p == 3) return 1;
ll d = p - 1, r = 0;
while (!(d & 1)) ++r, d >>= 1; // 将d处理为奇数
for (ll a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 823}) {
if (p == a) return 1;
ll x = binpow_mod(a, d, p);
if (x == 1 || x == p - 1) continue;
for (int i = 0; i < r - 1; ++i) {
x = (__int128)x * x % p;
if (x == p - 1) break;
}
if (x != p - 1) return 0;
}
return 1;
}
Pollard-Rho
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
ll Pollard_Rho(ll x) { // 找出x的一个非平凡因数
if (x % 2 == 0) return 2;
ll s = 0, t = 0;
ll c = ll(rng()) % (x - 1) + 1;
ll val = 1;
for (ll goal = 1; ; goal *= 2, s = t, val = 1) {
for (ll step = 1; step <= goal; step++) {
t = ((__int128)t * t + c) % x;
val = (__int128)val * abs((long long)(t - s)) % x;
if (step % 127 == 0) {
ll g = gcd(val, x);
if (g > 1) return g;
}
}
ll d = gcd(val, x);
if (d > 1) return d;
}
}
分解质因数
// MR+PR
void Prime_Factor(ll x, v& res) {
auto f = [&](auto f,ll x){
if (x == 1) return;
if (Miller_Rabin(x)) return res.push_back(x);
ll y = Pollard_Rho(x);
f(f,y),f(f,x / y);
};
f(f,x),sort(res.begin(),res.end());
}
// Euler
namespace euler_sieve {
vector<vec> primes;
void Prime_Factor_Offline(ll MAX) {
primes.resize(MAX);
for (ll i = 2; i < MAX; i++) {
if (!primes[i].empty()) continue;
for (ll j = i; j < MAX; j += i) {
ll mj = j;
while (mj % i == 0) {
primes[j].push_back(i);
mj /= i;
}
}
}
}
void Prime_Factor(ll x, vec& res) {
for (ll i = 2; i * i <= x; i++) while (x % i == 0) res.push_back(i), x /= i;
if (x != 1) res.push_back(x);
}
}
图论
拓扑排序
Khan BFS
struct graph {
vector<vector<ll>> G; // 邻接表
vector<ll> in; // 入度
ll n;
graph(ll dimension) : n(dimension), G(dimension + 1),in(dimension + 1) {};
void add_edge(ll from, ll to) {
G[from].push_back(to);
in[to]++;
}
bool topsort() {
L.clear();
queue<ll> S;
ll ans = 0;
for (ll i = 1; i <= n; i++) {
if (in[i] == 0) S.push(i), dp[i] = 1;
}
while (!S.empty()) {
ll v = S.front(); S.pop();
L.push_back(v);
for (auto& out : G[v])
if (--in[out] == 0)
S.push(out);
}
return ((L.size() == n) ? true : false); // 当且仅当图为DAG时成立
}
};
DFS
// vector<vec> adj
vec vis(n), dep(n), topo; topo.reserve(n);
auto dfs = [&](ll u, auto&& dfs) -> bool {
vis[u] = 1;
for (auto& v : adj[u]) {
dep[v] = max(dep[u] + 1, dep[v]);
if (vis[v] == 1) /*visiting*/ return false;
if (vis[v] == 0 && !dfs(v, dfs)) /*to visit*/ return false;
}
vis[u] = 2; /*visited*/
topo.push_back(u);
return true;
};
bool ok = true;
for (ll i = 0; ok && i < n; i++) if (vis[i] == 0) ok &= dfs(i, dfs);
最短路
Floyd
ll F[DIM][DIM];
int main() {
ll n, m; cin >> n >> m;
memset(F, 63, sizeof(F));
for (ll v = 1; v <= n; v++) F[v][v] = 0;
while (m--) {
ll u, v, w; cin >> u >> v >> w;
F[u][v] = min(F[u][v], w);
F[v][u] = min(F[v][u], w);
}
for (ll k = 1; k <= n; k++) {
for (ll i = 1; i <= n; i++) {
for (ll j = 1; j <= n; j++) {
F[i][j] = min(F[i][j], F[i][k] + F[k][j]);
}
}
}
for (ll i = 1; i <= n; i++) {
for (ll j = 1; j <= n; j++) {
cout << F[i][j] << ' ';
}
cout << '\n';
}
}
Dijkstra
#define INF 1e10
struct edge { ll to, weight; };
struct vert { ll vtx, dis; };
struct graph {
vector<vector<edge>> edges;
vector<bool> vis;
vector<ll> dis;
graph(const size_t verts) : edges(verts + 1), vis(verts + 1), dis(verts + 1) {};
void add_edge(ll u, ll v, ll w = 1) {
edges[u].emplace_back(edge{ v,w });
}
const auto& dijkstra(ll start) {
fill(dis.begin(), dis.end(), INF);
fill(vis.begin(), vis.end(), false);
const auto pp = PRED(vert, lhs.dis > rhs.dis);
priority_queue<vert, vector<vert>, decltype(pp)> T{ pp }; // 最短路点
T.push(vert{ start, 0 });
dis[start] = 0;
while (!T.empty())
{
vert from = T.top(); T.pop();
if (!vis[from.vtx]) {
vis[from.vtx] = true;
for (auto e : edges[from.vtx]) { // 松弛出边
if (dis[e.to] > dis[from.vtx] + e.weight) {
dis[e.to] = dis[from.vtx] + e.weight;
T.push(vert{ e.to, dis[e.to] });
}
}
}
}
return dis;
}
};
最小生成树
Kruskal
struct dsu {
vector<ll> pa;
dsu(const ll size) : pa(size) { iota(pa.begin(), pa.end(), 0); }; // 初始时,每个集合都是自己的父亲
inline bool is_root(const ll leaf) { return pa[leaf] == leaf; }
inline ll find(const ll leaf) { return is_root(leaf) ? leaf : pa[leaf] = find(pa[leaf]); } // 路径压缩
inline void unite(const ll x, const ll y) { pa[find(x)] = find(y); }
};
struct edge { ll from, to, weight; };
int main() {
ll n, m; cin >> n >> m;
vector<edge> edges(m);
for (auto& edge : edges)
cin >> edge.from >> edge.to >> edge.weight;
sort(edges.begin(), edges.end(), PRED(lhs.weight < rhs.weight));
dsu U(n + 1);
ll ans = 0;
ll cnt = 0;
for (auto& edge : edges) {
if (U.find(edge.from) != U.find(edge.to)) {
U.unite(edge.from, edge.to);
ans += edge.weight;
cnt++;
}
}
if (cnt == n - 1) cout << ans;
else cout << "orz";
}
欧拉回路
Hierholzer
struct edge { ll to, weight; };
struct vert { ll vtx, dis; };
template<size_t Size> struct graph {
bool G[Size][Size]{};
ll in[Size]{};
ll n;
graph(const size_t verts) : n(verts) {};
void add_edge(ll u, ll v) {
G[u][v] = G[v][u] = true;
in[v]++;
in[u]++;
}
v euler_road_ans;
v& euler_road(ll pa) {
euler_road_ans.clear();
ll odds = 0;
for (ll i = 1; i <= n; i++) {
if (in[i] % 2 != 0)
odds++;
}
if (odds != 0 && odds != 2) return euler_road_ans;
const auto hierholzer = [&](ll x, auto& func) -> void {
for (ll i = 1; i <= n; i++) {
if (G[x][i]) {
G[x][i] = G[i][x] = 0;
func(i, func);
}
}
euler_road_ans.push_back(x);
};
hierholzer(pa, hierholzer);
reverse(euler_road_ans.begin(),euler_road_ans.end()
return euler_road_ans;
}
};
LCA
- RMQ (ST表)
template<typename Container> struct sparse_table {
ll len;
vector<Container> table; // table[i,j] -> [i, i + 2^j - 1] 最大值
void init(const Container& data) {
len = data.size();
ll l1 = ceil(log2(len)) + 1;
table.assign(len, Container(l1));
for (ll i = 0; i < len; i++) table[i][0] = data[i];
for (ll j = 1; j < l1; j++) {
ll jpow2 = 1LL << (j - 1);
for (ll i = 0; i + jpow2 < len; i++) {
// f(i,j) = max(f(i,j-1), f(i + 2^(j-1), j-1))
table[i][j] = min(table[i][j - 1], table[i + jpow2][j - 1]);
}
}
}
auto query(ll l, ll r) {
ll s = floor(log2(r - l + 1));
// op([l,l + 2^s - 1], [r - 2^s + 1, r])
// -> op(f(l,s), f(r - 2^s + 1, s))
return min(table[l][s], table[r - (1LL << s) + 1][s]);
}
};
struct graph {
vector<v> G;
ll n;
v pos;
vector<II> depth_dfn;
sparse_table<vector<II>> st;
graph(ll n) : n(n), G(n + 1), pos(n + 1) { depth_dfn.reserve(2 * n + 5); };
void add_edge(ll from, ll to) {
G[from].push_back(to);
}
void lca_prep(ll root) {
ll cur = 0;
// 样例欧拉序 -> 4 2 4 1 3 1 5 1 4
// 样例之深度 -> 0 1 0 1 2 1 2 1 0
// 求 2 - 3 -> ^ - - ^
// 之间找到深度最小的点即可
// 1. 欧拉序
depth_dfn.clear();
auto dfs = [&](ll u, ll pa, ll dep, auto& dfs) -> void {
depth_dfn.push_back({ dep, u }), pos[u] = depth_dfn.size() - 1;
for (auto& v : G[u])
if (v != pa) {
dfs(v, u, dep+1, dfs);
depth_dfn.push_back({ dep, u });
}
};
dfs(root, root, 0, dfs);
// 2. 建关于深度st表;深度顺序即欧拉序
st.init(depth_dfn);
}
ll lca(ll x, ll y) {
ll px = pos[x], py = pos[y]; // 找到x,y的欧拉序
if (px > py) swap(px, py);
return st.query(px, py).second; // 直接query最小深度点;对应即为lca
}
};
int main() {
ll n, m, s; scanf("%lld%lld%lld", &n, &m, &s);
graph G(n + 1);
for (ll i = 1; i < n; i++) {
ll x, y; scanf("%lld%lld", &x, &y);
G.add_edge(x,y);
G.add_edge(y,x);
}
G.lca_prep(s);
while (m--) {
ll x, y; scanf("%lld%lld", &x, &y);
ll ans = G.lca(x, y);
printf("%lld\n",ans);
}
}
- 倍增思路
struct graph {
ll n;
vector<vector<ll>> G;
vector<vec> fa;
vec depth, dis;
graph(ll n) : n(n), fa(ceil(log2(n)) + 1, vec(n)), depth(n), G(n), dis(n) {}
void add_edge(ll from, ll to) {
G[from].push_back(to);
G[to].push_back(from);
}
void prep(ll root) {
auto dfs = [&](ll u, ll pa, ll dep, auto& dfs) -> void {
fa[0][u] = pa, depth[u] = dep;
for (ll i = 1; i < fa.size(); i++) {
// u 的第 2^i 的祖先是 u 第 (2^(i-1)) 个祖先的第 (2^(i-1)) 个祖先
fa[i][u] = fa[i - 1][fa[i - 1][u]];
}
for (auto& e : G[u]) {
if (e == pa) continue;
dis[e] = dis[u] + 1;
dfs(e, u, dep + 1, dfs);
}
};
dfs(root, root, 1, dfs);
}
ll lca(ll x, ll y) {
if (depth[x] > depth[y]) swap(x, y); // y 更深
ll diff = depth[y] - depth[x];
for (ll i = 0; diff; i++, diff >>= 1) // 让 y 上升到 x 的深度
if (diff & 1) y = fa[i][y];
if (x == y) return x;
for (ll i = fa.size() - 1; i >= 0; i--) {
if (fa[i][x] != fa[i][y]) {
x = fa[i][x];
y = fa[i][y];
}
}
return { fa[0][x] };
}
ll kth_parent(ll u, ll k){
for (ll i = 63;i >= 0;i--) if (k & (1ll << i)) u = fa[i][u];
return u;
}
};
树的直径
struct edge { ll to, cost; };
struct graph {
ll n;
vector<vector<edge>> G;
v dis, fa;
vector<bool> tag;
graph(ll n) : n(n), G(n), dis(n), fa(n), tag(n) {};
void add_edge(ll from, ll to, ll cost = 1) {
G[from].push_back({ to, cost });
}
// 实现 1:两次DFS -> 起止点
// 不能处理负权边(?)
ll path_dfs() {
ll end = 0; dis[end] = 0;
auto dfs = [&](ll u, ll pa, auto& dfs) -> void {
fa[u] = pa; // 反向建图
for (auto& e : G[u]) {
if (e.to == pa) continue;
dis[e.to] = dis[u] + e.cost;
if (dis[e.to] > dis[end]) end = e.to;
dfs(e.to, u, dfs);
}
};
// 在一棵树上,从任意节点 y 开始进行一次 DFS,到达的距离其最远的节点 z 必为直径的一端。
dfs(1, 1, dfs); // 1 -> 端点 A
ll begin = end;
dis[end] = 0;
dfs(end,end, dfs); // 端点 A -> B
// fa回溯既有 B -> A 路径;省去额外dfs
fa[begin] = 0; for (ll u = end; u ; u = fa[u]) tag[u] = true;
return dis[end];
}
// 实现 2:树形DP -> 长度
ll path_dp() {
v dp(n); // 定义 dp[u]:以 u 为根的子树中,从 u 出发的最长路径
// dp[u] = max(dp[u], dp[v] + cost(u,v)), v \in G[u]
ll ans = 0;
auto dfs = [&](ll u, ll pa, auto& dfs) -> void {
for (auto& e : G[u]) {
if (e.to == pa) continue;
dfs(e.to, u, dfs);
ll cost = e.cost;
// 题解:第一条直径边权设为-1
// - 若这些边被选择(与第二条边重叠),贡献则能够被抵消,否则这些边将走两遍
// - 若没被选择,则不对第二次答案造成影响
if (tag[u] && tag[e.to]) cost = -1;
ans = max(ans, dp[u] + dp[e.to] + cost);
dp[u] = max(dp[u], dp[e.to] + cost);
}
};
dfs(1, 1, dfs);
return ans;
}
};
Dinic 最大流
struct graph {
ll n, cnt = 0;
vec V, W, Next, Head;
graph(ll n, ll e = DIM) : V(e), W(e), Next(e, -1), Head(e, -1), n(n) {}
void add_edge(ll u, ll v, ll w) {
Next[cnt] = Head[u];
V[cnt] = v, W[cnt] = w;
Head[u] = cnt;
cnt++;
}
void dinic_add_edge(ll u, ll v, ll w) {
add_edge(u, v, w); // W[i]
add_edge(v, u, 0); // W[i^1]
}
private:
vec dinic_depth, dinic_cur;
bool dinic_bfs(ll s, ll t) /* 源点,汇点 */ {
queue<ll> Q;
dinic_depth.assign(n + 1, 0);
dinic_depth[s] = 1; Q.push(s);
while (!Q.empty()){
ll u = Q.front(); Q.pop();
for (ll i = Head[u]; i != -1; i = Next[i]) {
if (W[i] && dinic_depth[V[i]] == 0) {
dinic_depth[V[i]] = dinic_depth[u] + 1;
Q.push(V[i]);
}
}
}
return dinic_depth[t];
}
ll dinic_dfs(ll u, ll t, ll flow = INF) {
if (u == t) return flow;
for (ll& i = dinic_cur[u] /* 维护掉已经走过的弧 */; i != -1; i = Next[i]) {
if (W[i] && dinic_depth[V[i]] == dinic_depth[u] + 1) {
ll d = dinic_dfs(V[i], t, min(flow, W[i]));
W[i] -= d, W[i^1] += d; // i^1 是 i 的反向边; 原边i%2==0, 反边在之后;故反边^1->原边 反之亦然
if (d) return d;
}
}
return 0;
}
public:
ll dinic(ll s, ll t) {
ll ans = 0;
while (dinic_bfs(s, t)) {
dinic_cur = Head;
while (ll d = dinic_dfs(s, t)) ans += d;
}
return ans;
}
};
https://codeforces.com/gym/105336/submission/280592598 (G. 疯狂星期六)
int main() { fast_io(); /* El Psy Kongroo */ ll n, m; cin >> n >> m; ll t = n + m + 1; vec A(n + 1), V(n + 1); for (ll i = 1; i <= n; i++) cin >> A[i] >> V[i]; graph G(n + m + 1); ll cost_yyq = V[1], cost_all = 0; for (ll i = 1; i <= m; i++) { ll x, y, W; cin >> x >> y >> W; if (x == 1 || y == 1) cost_yyq += W; cost_all += W; // 源点-菜,菜-两个人 // 规定人点m开始 G.dinic_add_edge(0, i, W); G.dinic_add_edge(i, x + m, W); G.dinic_add_edge(i, y + m, W); } ll mxcost_yyq = min(cost_yyq, A[1]); for (ll i = 1; i <= n; i++) { if (i > 1 && V[i] >= mxcost_yyq) { cout << "NO"; return 0; } // 车费特判 if (i == 1) G.dinic_add_edge(i + m, t, mxcost_yyq - V[i]); // 最大费用->结点 else G.dinic_add_edge(i + m, t, min(mxcost_yyq - 1, A[i]) - V[i]); // **严格** 大于他人花费 } ll ans = G.dinic(0, t); if (ans == cost_all) cout << "YES"; else cout << "NO"; return 0; }
树链剖分 / HLD
- https://www.cnblogs.com/WIDA/p/17633758.html#%E6%A0%91%E9%93%BE%E5%89%96%E5%88%86hld
- https://oi-wiki.org/graph/hld/
- https://cp-algorithms.com/graph/hld.html
- https://www.luogu.com.cn/problem/P5903
struct HLD {
ll n, dfn_cnt = 0;
vec sizes, depth, top /*所在重链顶部*/, parent, dfn /*DFS序*/, dfn_out /* 链尾DFS序 */, inv_dfn, heavy /*重儿子*/;
vector<vec> G;
HLD(ll n) : n(n), G(n), sizes(n), depth(n), top(n), parent(n), dfn(n), dfn_out(n), inv_dfn(n), heavy(n) {};
void add_edge(ll u, ll v) {
G[u].push_back(v);
G[v].push_back(u);
}
// 注:唯一的重儿子即为最大子树根
void dfs1(ll u) {
heavy[u] = -1;
sizes[u] = 1;
for (ll& v : G[u]) {
if (depth[v]) continue;
depth[v] = depth[u] + 1;
parent[v] = u;
dfs1(v);
sizes[u] += sizes[v];
// 选最大子树为重儿子
if (heavy[u] == -1 || sizes[v] > sizes[heavy[u]]) heavy[u] = v;
}
}
// 注:dfn为重边优先时顺序
void dfs2(ll u, ll v_top) {
top[u] = v_top;
dfn[u] = ++dfn_cnt;
inv_dfn[dfn[u]] = u;
if (heavy[u] != -1) {
// 优先走重儿子
dfs2(heavy[u], v_top);
for (ll& v : G[u])
if (v != heavy[u] && v != parent[u]) dfs2(v, v);
}
dfn_out[u] = dfn_cnt;
}
// 预处理(!!)
void prep(ll root) {
depth[root] = 1;
dfs1(root);
dfs2(root, root);
}
// 多点lca
ll lca(ll a, ll b, ll c) {
return lca(a, b) ^ lca(b, c) ^ lca(c, a);
}
// 树上两点距离
ll dist(ll u, ll v) {
return depth[u] + depth[v] - 2 * depth[lca(u, v)] + 1;
}
// logn求LCA
ll lca(ll u, ll v) {
while (top[u] != top[v]) // 到同一重链
{
// 跳到更深的链
if (depth[top[u]] < depth[top[v]]) swap(u, v);
u = parent[top[u]];
}
return depth[u] < depth[v] ? u : v;
}
// 路径上区间query dfn序
void path_sum(ll u, ll v, auto&& query) {
while (top[u] != top[v]) // 到同一重链
{
// 跳到更深的链
if (depth[top[u]] < depth[top[v]]) swap(u, v);
// [dfn[top[u]],[u]]上求和 (在此插入RMQ)
query(dfn[top[u]], dfn[u]);
u = parent[top[u]];
}
if (dfn[v] > dfn[u]) swap(u, v);
query(dfn[v], dfn[u]);
}
// 第k的父亲
ll kth_parent(ll u, ll k) {
ll dep = depth[u] - k;
while (depth[top[u]] > dep) u = parent[top[u]];
return inv_dfn[dfn[u] - (depth[u] - dep)];
}
// v属于u的子树
bool is_child_of(ll u, ll v) {
return dfn[u] <= dfn[v] && dfn[v] <= dfn_out[u];
}
};
强连通分量 / SCC
Tarjan
struct SCC {
ll n, dfn_cnt;
vec dfn, low, vis, sta, dis;
vec in_loop;
stack<ll> stk;
vector<vector<II>> G;
SCC(ll n) : n(n), sta(n), dfn(n), low(n), G(n), dis(n), dfn_cnt(0), in_loop(n) {};
void add_edge(ll u, ll v, ll w) { G[u].push_back({v, w}); }
map<ll, vec> scc;
void tarjan(ll u) {
if (dfn[u]) return;
dfn[u] = low[u] = ++dfn_cnt, stk.push(u), sta[u] = 1;
for (auto const& [v, w] : G[u]) {
if (!dfn[v])
dis[v] = dis[u] + w, tarjan(v), low[u] = min(low[u], low[v]);
else if (sta[v]) {
low[u] = min(low[u], dfn[v]);
// coming from another node. we have a loop in v's component
// note that components of only one node / zero weight are not considered here
if (dis[v] != dis[u] + w) in_loop[v] = 1;
}
in_loop[u] |= in_loop[v];
}
if (dfn[u] == low[u]) {
ll v; do {
v = stk.top(), stk.pop();
sta[v] = 0;
scc[u].push_back(v);
in_loop[v] |= in_loop[u];
} while (u != v);
}
}
};
https://codeforces.com/gym/105578/problem/M 2024 沈阳 M
int main() { fast_io(); /* El Psy Kongroo */ ll n, m, q; cin >> n >> m >> q; SCC scc(n + 2); while (m--) { ll a, b; cin >> a >> b; // a % n -> nth floor [-n/2,n/2] scc.add_edge((a % n + n - 1) % n, ((a + b) % n + n - 1) % n, b); } for (ll i = 0; i < n; i++) scc.tarjan(i); while (q--) { ll x; cin >> x; x = (x % n + n - 1) % n; if (scc.in_loop[x]) cout << "Yes\n"; else cout << "No\n"; } return 0; }
动态规划 / DP
移步 DP 类型专题
数据结构 / DS
RMQ 系列
滑动窗口(单调队列)
deque<ll> dq; // k大小窗口
for (ll i = 1; i <= n; i++) {
// 维护k窗口min
while (dq.size() && dq.front() <= i - k) dq.pop_front();
while (dq.size() && a[dq.back()] >= a[i]) dq.pop_back();
dq.push_back(i);
if (i >= k) cout << a[dq.front()] << ' ';
}
for (ll i = 1; i <= n; i++) {
// 维护k窗口max
while (dq.size() && dq.front() <= i - k) dq.pop_front();
while (dq.size() && a[dq.back()] <= a[i]) dq.pop_back();
dq.push_back(i);
if (i >= k) cout << a[dq.front()] << ' ';
}
线段树
移步 线段树专题
ST 表
template<typename Container> struct sparse_table {
ll len;
vector<Container> table; // table[i,j] -> [i, i + 2^j - 1] 最大值
void init(const Container& data) {
len = data.size();
ll l1 = ceil(log2(len)) + 1;
table.assign(len, Container(l1));
for (ll i = 0; i < len; i++) table[i][0] = data[i];
for (ll j = 1; j < l1; j++) {
ll jpow2 = 1LL << (j - 1);
for (ll i = 0; i + jpow2 < len; i++) {
// f(i,j) = max(f(i,j-1), f(i + 2^(j-1), j-1))
table[i][j] = min(table[i][j - 1], table[i + jpow2][j - 1]);
}
}
}
auto query(ll l, ll r) {
ll s = floor(log2(r - l + 1));
// op([l,l + 2^s - 1], [r - 2^s + 1, r])
// -> op(f(l,s), f(r - 2^s + 1, s))
return min(table[l][s], table[r - (1LL << s) + 1][s]);
}
};
树状数组
struct fenwick : public vec {
using vec::vec;
void init(vec const& a) {
for (ll i = 0; i < a.size(); i++) {
(*this)[i] += a[i]; // 求出该子节点
ll j = i + lowbit(i);
if (j < size()) (*this)[j] += (*this)[i]; // ...后更新父节点
}
}
// \sum_{i=1}^{n} a_i
ll sum(ll n) {
ll s = 0;
for (; n; n -= lowbit(n)) s += (*this)[n];
return s;
};
ll query(ll l, ll r) {
return sum(r) - sum(l - 1);
}
void add(ll n, ll k) {
for (; n < size(); n += lowbit(n)) (*this)[n] += k;
};
};
求逆序对
在一个排列中,如果某一个较大的数排在某一个较小的数前面,就说这两个数构成一个 逆序(inversion)或反序。这里的比较是在自然顺序下进行的。 在一个排列里出现的逆序的总个数,叫做这个置换的 逆序数。排列的逆序数是它恢复成正序序列所需要做相邻对换的最少次数。因而,排列的逆序数的奇偶性和相应的置换的奇偶性一致。这可以作为置换的奇偶性的等价定义。
// https://oi-wiki.org/math/permutation/#%E9%80%86%E5%BA%8F%E6%95%B0
// 带离散化
ll inversion_discreet(vec& a) {
map<ll, ll> inv;
vec b = a;
sort(b.begin(), b.end());
b.resize(unique(b.begin(), b.end()) - b.begin());
fenwick F(b.size());
for (ll i = 0; i < b.size(); i++)
inv[b[i]] = b.size() - i;
ll ans = 0;
for (ll x : a) {
ll i = inv[x];
ans += F.sum(i - 1);
F.add(i, 1);
}
return ans;
}
// 不带离散化;注意上下界
ll inversion(vec& a) {
fenwick F(*max_element(a.begin(),a.end()) + 1);
ll ans = 0;
for (ll i = a.size() - 1; i >= 0; i--) {
ans += F.sum(a[i] - 1);
F.add(a[i], 1);
}
return ans;
}
- https://codeforces.com/gym/105578/problem/D 2024 沈阳 D
https://codeforces.com/gym/105578/submission/312290991
int main() { fast_io(); /* El Psy Kongroo */ ll t; cin >> t; while (t--) { ll n; cin >> n; vec a(n); for (ll& x: a ) cin >> x; vec b(n); for (ll& x: b ) cin >> x; ll invs = inversion(a) + inversion(b); // one can only *swap* when // a_i * b_i + a_j * b_j < a_i * b_j + a_j * b_i // (a_i - a_j) * (b_i - b_j) < 0 // operating this on either a or b will *decrease* the number of inversions on either side // since the order would be more 'sorted' after the swap. // no. of swaps is exactly the number of inversions. // A starts first, odd ops -> A, even ops -> B cout << "AB"[invs % 2 == 0]; for (ll i = 0; i < n - 1;i++) { char t; ll l,r,d; cin >> t >> l >> r >>d; // t -> a or b to 'shuffle' on. doesn't matter // since we care only about the *total* inversions here // shuffling an array in range [l,r] by d is simply // swapping (r - l) * d times. // we can simply add this to the total no. swaps invs += (r - l) * d; cout << "AB"[invs % 2 == 0]; } cout << endl; } return 0; }
支持不可差分查询模板
- 解释:https://oi-wiki.org/ds/fenwick/#树状数组维护不可差分信息
- 题目:https://acm.hdu.edu.cn/showproblem.php?pid=7463
struct fenwick {
ll n;
v a, C, Cm;
fenwick(ll n) : n(n), a(n + 1), C(n + 1, -1e18), Cm(n + 1, 1e18) {}
ll getmin(ll l, ll r) {
ll ans = 1e18;
while (r >= l) {
ans = min(ans, a[r]); --r;
for (; r - LOWBIT(r) >= l; r -= LOWBIT(r)) ans = min(ans, Cm[r]);
}
return ans;
}
ll getmax(ll l, ll r) {
ll ans = -1e18;
while (r >= l) {
ans = max(ans, a[r]); --r;
for (; r - LOWBIT(r) >= l; r -= LOWBIT(r)) ans = max(ans, C[r]);
}
return ans;
}
void update(ll x, ll v) {
a[x] = v;
for (ll i = x; i <= n; i += LOWBIT(i)) {
C[i] = a[i]; Cm[i] = a[i];
for (ll j = 1; j < LOWBIT(i); j *= 2) {
C[i] = max(C[i], C[i - j]);
Cm[i] = min(Cm[i], Cm[i - j]);
}
}
}
};
区间模板
- 解释:https://oi-wiki.org/ds/fenwick/#区间加区间和
- 题目:https://hydro.ac/d/ahuacm/p/Algo0304
int main() {
std::ios::sync_with_stdio(false); std::cin.tie(0); std::cout.tie(0);
/* El Psy Kongroo */
ll n, m; cin >> n >> m;
fenwick L(n + 1), R(n + 1);
auto add = [&](ll l, ll r, ll v) {
L.add(l, v); R.add(l, l * v);
L.add(r + 1, -v); R.add(r + 1, -(r + 1) * v);
};
auto sum = [&](ll l, ll r) {
return (r + 1) * L.sum(r) - l * L.sum(l - 1) - R.sum(r) + R.sum(l - 1);
};
for (ll i = 1; i <= n; i++) {
ll x; cin >> x;
add(i, i, x);
}
while (m--) {
ll op; cin >> op;
if (op == 1) {
ll x, y, k; cin >> x >> y >> k;
add(x, y, k);
}
else {
ll x; cin >> x;
cout << sum(x, x) << endl;
}
}
return 0;
}
优先队列(二叉堆)
auto pp = PRED(ll, lhs > rhs); priority_queue<ll,vector<ll>,decltype(pp)> Q {pp};
DSU
- 不考虑边权
struct dsu {
vector<ll> pa;
dsu(const ll size) : pa(size) { iota(pa.begin(), pa.end(), 0); }; // 初始时,每个集合都是自己的父亲
inline bool is_root(const ll leaf) { return pa[leaf] == leaf; }
inline ll find(const ll leaf) { return is_root(leaf) ? leaf : pa[leaf] = find(pa[leaf]); } // 路径压缩
inline void unite(const ll x, const ll y) { pa[find(x)] = find(y); }
};
struct dsu {
vector<ll> pa, root_dis, set_size; // 父节点,到父亲距离,自己为父亲的集合大小
dsu(const ll size) : pa(size), root_dis(size, 0), set_size(size, 1) { iota(pa.begin(), pa.end(), 0); }; // 同上
inline bool is_root(const ll leaf) { return pa[leaf] == leaf; }
inline ll find(const ll leaf) {
if (is_root(leaf)) return leaf;
const ll f = find(pa[leaf]);
root_dis[leaf] += root_dis[pa[leaf]]; // 被压缩进去的集合到根距离变长
pa[leaf] = f;
return pa[leaf];
}
inline void unite(const ll x, const ll y) {
if (x == y) return;
const ll fx = find(x);
const ll fy = find(y);
pa[fx] = fy;
root_dis[fx] += set_size[fy]; // 同 find
set_size[fy] += set_size[fx]; // 根集合大小扩大
}
inline ll distance(const ll x, const ll y) {
const ll fx = find(x);
const ll fy = find(y);
if (fx != fy) return -1; // 同最终父亲才可能共享路径
return abs(root_dis[x] - root_dis[y]) - 1;
}
};
字符串
AC自动机
struct AC {
int tr[DIM][26], tot;
int idx[DIM], fail[DIM], val[DIM], cnt[DIM];
void init() {
tot = 0;
memset(tr, 0, sizeof(tr));
memset(idx, 0, sizeof(idx));
memset(fail, 0, sizeof(fail));
memset(val, 0, sizeof(val));
memset(cnt, 0, sizeof(cnt));
}
void insert(string const& s, int id) {
int u = 0;
for (char c : s) {
if (!tr[u][c - 'A']) tr[u][c - 'A'] = ++tot; // 如果没有则插入新节点
u = tr[u][c - 'A']; // 搜索下一个节点
}
idx[u] = id; // 以 u 为结尾的字符串编号为 idx[u]
}
void build() {
queue<int> q;
for (int i = 0; i < 26; i++)
if (tr[0][i]) q.push(tr[0][i]);
while (q.size()) {
int u = q.front();
q.pop();
for (int i = 0; i < 26; i++) {
if (tr[u][i]) {
fail[tr[u][i]] = tr[fail[u]][i]; // fail数组:同一字符可以匹配的其他位置
q.push(tr[u][i]);
}
else
tr[u][i] = tr[fail[u]][i];
}
}
}
void query(string const& s) {
int u = 0;
for (char c : s) {
u = tr[u][c - 'A']; // 转移
for (int j = u; j; j = fail[j]) val[j]++;
}
for (int i = 0; i <= tot; i++)
if (idx[i]) cnt[idx[i]] = val[i];
}
}
字符串哈希
- https://acm.hdu.edu.cn/showproblem.php?pid=7433
- https://acm.hdu.edu.cn/contest/problem?cid=1125&pid=1011
// https://oi-wiki.org/string/hash/
namespace substring_hash
{
const ull BASE = 3;
static ull pow[DIM];
void init() {
pow[0] = 1;
for (ll i = 1; i < DIM; i++) pow[i] = (pow[i - 1] * substring_hash::BASE);
}
struct hash : public uv {
void init(string const& s) { init(s.c_str(), s.size()); }
void init(const char* s) { init(s, strlen(s));}
void init(const char* s, ll n) {
resize(n + 1);
(*this)[0] = 0;
for (ll i = 0; i < n; i++) {
(*this)[i + 1] = ((*this)[i] * BASE) + s[i];
}
}
// string[0, size()) -> query[l, r)
ull query(ll l, ll r) const {
return (*this)[r] - (*this)[l] * pow[r - l];
}
};
};
杂项
二分
// 找min
ll l = 0, r = INF;
while (l < r) {
ll m = (l + r) >> 1;
if (check(m)) r = m;
else l = m + 1;
}
cout << l << endl;
// 找max
ll l = 0, r = INF;
while (l < r) {
ll m = (l + r) >> 1;
if (check(m)) l = m + 1;
else r = m;
}
cout << l - 1 << endl;
置换环
典中典之将长度$n$排列$p$中元素$i,j$交换$k$次使其变为排列$p’$,求最小$k$?
- 两个排列顺序连边;显然排列一致时图中有$n$个一元环
- 在一个环中交换一次可多分出一个环;记环的大小为$s$
- 显然,分成$n$个一元环即分环$s-1$次;记有$m$个环
- 可得 $k = \sum_{1}^{m}{s - 1} = n - m$
附题:https://codeforces.com/contest/2033/submission/287844212
- 不同于一般排序题,这里排列不需要完全一致;$p_i = i, p_i = p_{{i}_{i}}$皆可
- 意味着,最后要的环大小也可以是$2$,此时显然大小更优;更改$k$的计算为$k = \sum_{1}^{m}{\frac{s - 1}{2}}$即可
离散化杂谈
适用于大$a_i$但小$n$情形
- 在线
map
写法
map<ll, ll> pfx;
for (auto [ai, bi] : a) {
pfx[ai + 1] += 1;
pfx[bi + 1] -= 1;
}
for (auto it = next(pfx.begin()); it != pfx.end(); it++)
it->second += prev(it)->second;
auto query = [&](ll x) -> ll {
if (pfx.contains(x)) return pfx[x];
auto it = pfx.lower_bound(x);
if (it != pfx.begin()) it = prev(it);
else if (it->first != x) return 0; // 上界之前
return it->second;
};
- 离线
map
写法
map<ll, ll> R;
for (auto& ai : a) R[ai] = 1;
vec Ri; // kth-big
ll cnt = 0; for (auto& [x, i] : R) i = cnt++, Ri.push_back(x);
for (auto& [ai, bi] : a) ai = R[ai], bi = R[bi];
- 离线
set
写法- 注意该
set
若为STL set,复杂度($R(x)$) 实为$O(n)$- 详见 https://codeforces.com/blog/entry/123961
- TL;DR
std::distance
对且仅对随机迭代器为$O(1)$操作,其余迭代器(如果适用)皆为$O(n)$ - 在 https://codeforces.com/contest/2051/submission/298511255 可见产生TLE
map
解法(AC):https://codeforces.com/contest/2051/submission/298511985
- 注意该
set<ll> Rs;
vector<II> a(n);
for (auto& ai : a) Rs.insert(ai);
vec Ri(R.begin(), R.end()); // kth-big
auto R = [&](ll x) -> ll { return distance(Rs.begin(), Rs.lower_bound(x)); };
前缀和
摘自:https://oi-wiki.org/basic/prefix-sum/
1D $$ p(x) = \sum_{i=0}^{n}{a(i)} $$
p[0] = a[0]; for (ll i = 1;i < n;i++) p[i] = p[i - 1] + a[i];
2D $$ S_{i,j} = \sum_{i’\le i}\sum_{j’\le j}A_{i’,j’}. $$
- 容斥$O(1)$解法 $$ p(x,y) = S_{i,j} = A_{i,j} + S_{i-1,j} + S_{i,j-1} - S_{i-1,j-1} $$
for (ll i = 1; i <= n; i++) for (ll j = 1; j <= m; j++) p[i][j] = p[i][j - 1] + p[i - 1][j] - p[i - 1][j - 1] + a[i][j];
N-D
显然的算法是,每次只考虑一个维度,固定所有其它维度,然后求若干个一维前缀和,这样对所有 $k$ 个维度分别求和之后,得到的就是 $k$ 维前缀和。
三维样例如下:
// Prefix-sum for 3rd dimension.
for (int i = 1; i <= N1; ++i)
for (int j = 1; j <= N2; ++j)
for (int k = 1; k <= N3; ++k) p[i][j][k] += p[i][j][k - 1];
// Prefix-sum for 2nd dimension.
for (int i = 1; i <= N1; ++i)
for (int j = 1; j <= N2; ++j)
for (int k = 1; k <= N3; ++k) p[i][j][k] += p[i][j - 1][k];
// Prefix-sum for 1st dimension.
for (int i = 1; i <= N1; ++i)
for (int j = 1; j <= N2; ++j)
for (int k = 1; k <= N3; ++k) p[i][j][k] += p[i - 1][j][k];
子集和
https://codeforces.com/contest/2086/problem/D;https://zhuanlan.zhihu.com/p/1891280211527590056
$c_i$为每种数量
观察到每种字符只能出现在奇数位置或偶数位置之一后,考虑分配$c_i$中几部分到奇数位置
很显然记总共有$n$个位置可取奇数$odd = \lceil n/2 \rceil$个位置,选择$c_i$中某几个构成集合$S$,使得$\sum_{j \in S} c_j <= odd$
计这样的子集个数,实际上为01背包问题;记$i$为背包大小(总位置数量)
- $ dp_i = \sum_{j=odd}^{c_j} dp_{i - c_j}$
- 从后往前递推即可
AC Code
int main() { fast_io(); /* El Psy Kongroo */ comb::prep(); ll t; cin >> t; while (t--) { ll sum = 0; vec c(26 + 1); for (ll i = 1; i <= 26; i++) cin >> c[i], sum += c[i], sum %= MOD; ll odd = ceil((lf)sum/2); ll even = sum - odd; vec dp(odd + 1); dp[0] = 1; for (ll i = 1; i <= 26; i++) if (c[i]) for (ll j = odd; j >= c[i];j--) dp[j] += dp[j - c[i]], dp[j] %= MOD; ll ways = dp[odd]; // 1~26中取出数字填充奇数位数方法个数 // 设选取于奇数方案一定 // 设奇数位上的数字*类型*为 j_i (1~26) // 奇数位方法为 odd! / c[j_1]! * c[j_2]! * c[j_3]! * ... // 偶数位方法为 even! / c[j_4]! * c[j_5]! * c[j_6]! * ... // 总方法 odd! * even! / c[j_1]! * c[j_2]! ... * c[j_n]! // ncomb = odd! * even! / c_1! * c_2! ... * c_26! // 带入选数方案即 // ans = ways * ncomb ll ncomb = comb::fac[odd] % MOD * comb::fac[even] % MOD; ll icomb = 1; for (ll i = 1;i <= 26;i++) icomb *= comb::ifac[c[i]], icomb %= MOD; ll ans = ways % MOD * ncomb % MOD * icomb % MOD; cout << ans << endl; } return 0; }
二进制奇技淫巧
a | b == (a ^ b) + (a & b);
(a ^ (a & b)) == ((a | b) ^ b);
(b ^ (a & b)) == ((a | b) ^ a);
((a & b) ^ (a | b)) == (a ^ b);
(a + b) == (a | b) + (a & b);
(a + b) == (a ^ b) + 2 * (a & b);
(a - b) == ((a ^ (a & b)) - ((a | b) ^ a));
(a - b) == (((a | b) ^ b) - ((a | b) ^ a));
(a - b) == ((a ^ (a & b)) - (b ^ (a & b)));
(a - b) == (((a | b) ^ b) - (b ^ (a & b)));
MSVC也要用万能头!!
bits/stdc++.h
#ifndef _GLIBCXX_NO_ASSERT
#include <cassert>
#endif
#include <cctype>
#include <cerrno>
#include <cfloat>
#include <ciso646>
#include <climits>
#include <clocale>
#include <cmath>
#include <csetjmp>
#include <csignal>
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#if __cplusplus >= 201103L
#include <ccomplex>
#include <cfenv>
#include <cinttypes>
#include <cstdbool>
#include <cstdint>
#include <ctgmath>
#include <cwchar>
#include <cwctype>
#endif
// C++
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iosfwd>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <locale>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <stdexcept>
#include <streambuf>
#include <string>
#include <typeinfo>
#include <utility>
#include <valarray>
#include <vector>
#if __cplusplus >= 201103L
#include <array>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <forward_list>
#include <future>
#include <initializer_list>
#include <mutex>
#include <random>
#include <ratio>
#include <regex>
#include <scoped_allocator>
#include <system_error>
#include <thread>
#include <tuple>
#include <typeindex>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#endif